Crystal elasto-plasticity on the Poincaré half-plane
نویسندگان
چکیده
منابع مشابه
The Poincaré Half-Plane for Informationally-Complete POVMs
It has been shown in previous papers that classes of (minimal asymmetric) informationally-complete positive operator valued measures (IC-POVMs) in dimension d can be built using the multiparticle Pauli group acting on appropriate fiducial states. The latter states may also be derived starting from the Poincaré upper half-plane model H. To do this, one translates the congruence (or non-congruenc...
متن کاملOn the Linear Combinations of Slanted Half-Plane Harmonic Mappings
In this paper, the sufficient conditions for the linear combinations of slanted half-plane harmonic mappings to be univalent and convex in the direction of $(-gamma) $ are studied. Our result improves some recent works. Furthermore, a illustrative example and imagine domains of the linear combinations satisfying the desired conditions are enumerated.
متن کاملOn the superlinear convergence in computational elasto-plasticity
We consider the convergence properties of return algorithms for a large class of rate-independent plasticity models. Based on recent results for semismooth functions, we can analyze these algorithms in the context of semismooth Newton methods guaranteeing local superlinear convergence. This recovers results for classical models but also extends to general hardening laws, multi-yield plasticity,...
متن کاملCoulomb Gas on the Half Plane
The Coulomb-gas description of minimal models is considered on the half plane. Screening prescriptions are developed by the perturbative expansion of the Liouville theory with imaginary coupling and with Neumann boundary condition on the bosonic field. To generate the conformal blocks of more general boundary conditions, we propose the insertion of boundary operations.
متن کاملDivergence-Free Multiwavelets on the Half Plane
We use the biorthogonal multiwavelets related by differentiation constructed in previous work to construct compactly supported biorthogonal multiwavelet bases for the space of vector fields on the upper half plane R+ such that the reconstruction wavelets are divergence-free and have vanishing normal components on the boundary of R+. Such wavelets are suitable to study the Navier–Stokes equation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Plasticity
سال: 2020
ISSN: 0749-6419
DOI: 10.1016/j.ijplas.2020.102728